Reliable CPS Design for Unreliable Hardware Platforms

Author:

Chang Wanli,Narayanaswamy Swaminathan,Pröbstl Alma,Chakraborty Samarjit

Abstract

AbstractToday, many battery-operated cyber-physical systems (CPS) ranging from domestic robots, to drones, and electric vehicles are highly software-intensive. The software in such systems involves multiple feedback control loops that implement different functionality. How these control loops are designed is closely related to both the semiconductor aging of the processors on which the software is run and also the aging of the batteries in these systems. For example, sudden acceleration in an electric vehicle can negatively impact the health of the vehicle’s battery. On the other hand, processors age over time and stress, impacting the execution of control algorithms and thus the control performance. With increasing semiconductor scaling, and our increasing reliance on battery-operated devices, these aging effects are of concern for the lifetime of these devices. Traditionally, the design of the control loops focused only on control-theoretic metrics, related to stability and performance (such as peak overshoot or settling time). In this chapter we show that such controller design techniques that are oblivious of the characteristics of the hardware implementation platform dramatically worsen the battery behaviour and violate the safety requirement with processor aging. However, with proper controller design these effects can be mitigated—thereby improving the lifetime of the devices.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3