Boosting Consumers: Algorithm-Supported Decision-Making under Uncertainty to (Learn to) Navigate Algorithm-Based Decision Environments

Author:

Rebitschek Felix G.

Abstract

AbstractFinding information that is quality assured, objectively required, and subjectively needed is essential for consumers navigating uncertain and complex decision environments (e.g., retail or news platforms) and making informed decisions. This task is particularly challenging when algorithms shape environments and choice sets in the providers’ interest. On the other side, algorithms can support consumers’ decision-making under uncertainty when they are transparent and educate their users (boosting). Exemplary, fast-and-frugal decision trees as interpretable models can provide robust classification performance akin to expert advice and be effective when integrated in consumer decision-making. This study’s author provides an overview of expert-driven decision-tree developments from a consumer research project. The developed tools boost consumers making decisions under uncertainty across different domains. Informed decision making in highly uncertain, non-transparent algorithm-controlled decision environments pose a need for applicable and educative tools, which calls for public engagement in their development within the field of consumer education.

Publisher

Springer Nature Switzerland

Reference30 articles.

1. Aikman, D., Galesic, M., Gigerenzer, G., Kapadia, S., Katsikopoulos, K., Kothiyal, A., Murphy, E., & Neumann, T. (2014). Taking uncertainty seriously: Simplicity versus complexity in financial regulation (Bank of England Financial Stability Paper No. 28). Retrieved from https://www.bankofengland.co.uk/-/media/boe/files/financial-stability-paper/2014/taking-uncertainty-seriously-simplicity-versus-complexity-in-financial-regulation.pdf?la=en&hash=2DE92C65BBF37630EE568ED475A4B2B2D996EE97

2. Center for Adaptive Rationality. (2022). Science of Boosting. Retrieved from https://scienceofboosting.org/de/

3. Deutscher Bundestag. (2013. February 20). Gesetz zur Verbesserung der Rechte von Patientinnen und Patienten [Act to improve the rights of patients]. Berlin, Germany.

4. EBM-Netzwerk. (2016). Gute Praxis Gesundheitsinformation: Ein Positionspapier des Deutschen Netzwerks Evidenzbasierte Medizin e.V. [Good practice health information: Positionpaper by the German network for evidence-based medicine e.V.]. Berlin: Deutsches Netzwerk Evidenzbasierte Medizin e.V.. Retrieved from https://www.ebm-netzwerk.de/de/veroeffentlichungen/weitere-publikationen

5. Fritz, W., & Thiess, M. (1986). Das Informationsverhalten des Konsumenten und seine Konsequenzen für das Marketing [The consumer’s information behavior and its consequences for marketing]. In F. Unger (Ed.), Konsumentenpsychologie und Markenartikel (pp. 141–176). Heidelberg: Physica-Verlag. https://doi.org/10.1007/978-3-642-93621-0_6

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3