1. Kaplan, J. et al.: Scaling laws for neural language models (2020). arXiv:2001.08361
2. Baevski, A., Zhou, H., Mohamed, A., Auli, M.: wav2vec 2.0: a framework for self-supervised learning of speech representations (2020). arXiv:2006.11477
3. Wirth, J., Peinl, R.: Automatic speech recognition in German: a detailed error analysis. In: 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS), IEEE, 2022, pp. 1–8 (2022)
4. Hsu, W.-N., Bolte, B., Tsai, Y.-H.H., Lakhotia, K., Salakhutdinov, R., Mohamed, A.: Hubert: self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 3451–3460 (2021)
5. Chen, S., et al.: Wavlm: large-scale self-supervised pre-training for full stack speech processing (2021). arXiv:2110.13900