Publisher
Springer Nature Switzerland
Reference25 articles.
1. Li, Q., Liu, J., Mi, X., et al.: Object-oriented crop classification for GF-6 WFV remote sensing images based on convolutional neural network. 25(2), 549–558 (2021). https://doi.org/10.11834/jrs.20219347
2. Guo, Z., Qi, W., Huang, Y., et al.: Identification of crop type based on C-AENN using time series sentinel-1A SAR data. Remote Sens. 14(6) (2022). https://doi.org/10.3390/rs14061379
3. Khamparia, A., Saini, G., Gupta, D., et al.: Seasonal crops disease prediction and classification using deep convolutional encoder network. 39(2), 818–836 (2020). https://doi.org/10.1007/s00034-019-01041-0
4. Khryashchev, V., Pavlov, V., Priorov, A., Kazina, E.: Convolutional neural network for satellite imagery. Conf. Open Innov. Assoc. FRUCT 22, 344–347 (2018)
5. Garge, N.R., Bobashev, G., Eggleston, B.: Random forest methodology for model-based recursive partitioning: the mobForest package for R. BMC Bioinform. 14, 125 (2013)