Publisher
Springer International Publishing
Reference16 articles.
1. A.M. Amleh, D.A. Georgiou, E.A. Grove, and G. Ladas, On the recursive sequence x n + 1 = α + x n − 1 x n $$x_{n+1}=\alpha +\frac {x_{n-1}}{x_{n}}$$ , J. Math. Anal. Appl.; (233)(1999), 790–798.
2. A.M. Amleh, J. Hoag, and G. Ladas, A Difference Equation with Eventually Periodic Solutions, Computer Math. Applic. 36, (1998), 401–404.
3. W.J. Briden, E.A. Grove, C.M. Kent, and G. Ladas, Eventually Periodic Solutions of x n + 1 = m a x { 1 x n , A n x n − 1 } $$x_{n+1}=max\{\frac {1}{x_{n}}, \frac {A_{n}}{x_{n-1}}\}$$ , Commun. Appl. Nonlinear Anal. 6 (1999), no. 4.
4. W.J. Briden, G. Ladas, and T. Nesemann, On the Recursive Sequence x n + 1 = m a x 1 x n , A n x n − 1 $$x_{n+1}=max\left \{\frac {1}{x_{n}}, \frac {A_{n}}{x_{n-1}}\right \}$$ , J. Differ. Equations. Appl. 5 (1999), 491–494.
5. E. Camouzis, G. Ladas, I.W. Rodriques, and S. Northsfield. On the rational recursive sequences x n + 1 = β x n 2 1 + x n 2 . $$x_{n+1}=\frac {\beta {x_{n}}^{2}}{1+{x_{n}}^{2}}\mbox{.}$$ Computers Math. Appl., 28:37–43, 1994.