1. Abitbol, J., Karsai, M., Fleury, E.: Location, occupation, and semantics based socioeconomic status inference on Twitter, pp. 1192–1199, November 2018
2. Aletras, N., Chamberlain, B.P.: Predicting Twitter user socioeconomic attributes with network and language information. In: Proceedings of the 29th on Hypertext and Social Media, pp. 20–24. ACM (2018)
3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 2787–2795. Curran Associates, Inc. (2013)
4. Buchgeher, G., Gabauer, D., Martinez-Gil, J., Ehrlinger, L.: Knowledge graphs in manufacturing and production: a systematic literature review. IEEE Access 9, 55537–55554 (2021). https://doi.org/10.1109/ACCESS.2021.3070395
5. Ding, S., Huang, H., Zhao, T., Fu, X.: Estimating socioeconomic status via temporal-spatial mobility analysis - a case study of smart card data. In: 2019 28th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9 (2019)