1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein Generative Adversarial Networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR (06–11 Aug 2017)
2. Ben-David, E., Rabinovitz, C., Reichart, R.: PERL: Pivot-based Domain Adaptation for Pre-trained Deep Contextualized Embedding Models. CoRR abs/2006.09075 (2020)
3. Ben Zaken, E., Goldberg, Y., Ravfogel, S.: BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-short.1
4. Blitzer, J., Dredze, M., Pereira, F.: Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 440–447. Association for Computational Linguistics, Prague, Czech Republic (Jun 2007). www.aclanthology.org/P07-1056
5. Blitzer, J., McDonald, R., Pereira, F.: Domain Adaptation with Structural Correspondence Learning. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 120–128. Association for Computational Linguistics, Sydney, Australia (2006). www.aclanthology.org/W06-1615