Publisher
Springer Nature Switzerland
Reference17 articles.
1. Di Francescomarino, C., et al.: Genetic algorithms for hyperparameter optimization in predictive business process monitoring. Inf. Syst. 74, 67–83 (2018). Information Systems Engineering: selected papers from CAiSE 2016
2. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. PP(99), 1 (2017)
3. Lecture Notes in Computer Science;F Hutter,2011
4. Karmaker, S.K., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K.: AutoML to date and beyond: challenges and opportunities. ACM Comput. Surv. 54(8). Association for Computing Machinery, New York, NY, USA (2021)
5. Kwon, N., Comuzzi, M.: Genetic algorithms for AutoML in process predictive monitoring. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) Process Mining Workshops. ICPM 2022. LNBIP, vol. 468, pp. 242–254. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27815-0_18
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献