1. Alistarh, D., Allen-Zhu, Z., Li, J.: Byzantine stochastic gradient descent. CoRR abs/1803.08917 (2018). http://arxiv.org/abs/1803.08917
2. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with adversaries: byzantine tolerant gradient descent. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 119–129. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent.pdf
3. Chen, Y., Su, L., Xu, J.: Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proc. ACM Meas. Anal. Comput. Syst. 1(2), 1–25 (2017). https://doi.org/10.1145/3154503
4. Damaskinos, G., El Mhamdi, E.M., Guerraoui, R., Patra, R., Taziki, M.: Asynchronous Byzantine machine learning (the case of SGD). In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1145–1154. PMLR, Stockholmsmässan, Stockholm Sweden (10–15 Jul 2018). http://proceedings.mlr.press/v80/damaskinos18a.html
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90