Author:
Koskinen Hannu E. J.,Kilpua Emilia K. J.
Abstract
AbstractHow different wave modes are driven, is a central issue in space plasma physics. A practical problem is that often only indirect evidence of the driver can be identified in observations. The plasma environment is complex and variable and already a small difference in background or initial conditions may lead to widely different observable outcomes. In this chapter we discuss drivers of waves causing acceleration, transport and loss of radiation belt particles, whereas Chap. 10.1007/978-3-030-82167-8_6 discusses these effects in detail. We note that while this division is motivated in a textbook, it is somewhat artificial and the growth of the waves and their consequences often need to be studied together. For example, a whistler-mode wave can grow from thermal fluctuations due to gyro-resonant interactions until a marginally stable state is reached or nonlinear growth takes over. The growing wave starts to interact with different particle populations leading to damping or further growth of the wave. The fluxes of the higher-energy radiation belt particles are, however, small compared to the lower-energy background population, which supports the wave. Thus their effects on the overall wave activity usually remain small, although the waves can have drastic effect on higher-energy populations. Consequently, these two chapters should be studied together.
Publisher
Springer International Publishing