1. Balduzzi, D., Garnelo, M., Bachrach, Y., Czarnecki, W., et al.: Open-ended learning in symmetric zero-sum games. In: ICML, vol. 97, pp. 434–443. PMLR (2019)
2. Balduzzi, D., Racanière, S., Martens, J., Foerster, J.N., et al.: The mechanics of n-player differentiable games. In: ICML, vol. 80, pp. 363–372. PMLR (2018)
3. Berner, C., Brockman, G., Chan, B., Cheung, V., et al.: Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 (2019)
4. Bowling, M., Veloso, M.: Existence of multiagent equilibria with limited agents. J. Artif. Intell. Res. 22, 353–384 (2004)
5. Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: an overview. In: Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-agent Systems and Applications - 1, pp. 183–221. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14435-6_7