Publisher
Springer International Publishing
Reference13 articles.
1. Bellamy, R.K.E., et al.: AI Fairness 360: an extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias, Oct 2018. arxiv.org/abs/1810.01943
2. Cabrera, A.A., Epperson, W., Hohman, F., Kahng, M., Morgenstern, J., Chau, D.H.: FAIRVIS: Visual analytics for discovering intersectional bias in machine learning. In: 2019 IEEE Conference on Visual Analytics Science and Technology (VAST), Oct 2019
3. Castelnovo, A., Crupi, R., Greco, G., Regoli, D., Penco, I.G., Cosentini, A.C.: A clarification of the nuances in the fairness metrics landscape. Sci. Rep. 12(1), 1–21 (2022)
4. Foulds, J.R., Islam, R., Keya, K.N., Pan, S.: An Intersectional Definition of Fairness. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1918–1921. IEEE (2020)
5. Gleicher, M., Barve, A., Yu, X., Heimerl, F.: Boxer: Interactive comparison of classifier results. In: Computer Graphics Forum, vol. 39, pp. 181–193. Wiley Online Library (2020)