Multi-task Lung Nodule Detection in Chest Radiographs with a Dual Head Network
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-16431-6_67
Reference28 articles.
1. Ausawalaithong, W., Thirach, A., Marukatat, S., Wilaiprasitporn, T.: Automatic lung cancer prediction from chest x-ray images using the deep learning approach. In: BMEiCON 2018–11th Biomedical Engineering International Conference, vol. 1 (2019). https://doi.org/10.1109/BMEICON.2018.8609997
2. Busby, L.P., Courtier, J.L., Glastonbury, C.M.: Bias in radiology: the how and why of misses and misinterpretations. Radiographics 38, 236–247 (2018), https://pubs.rsna.org/doi/abs/10.1148/rg.2018170107
3. Lecture Notes in Computer Science;MV Sainz de Cea,2020
4. Cha, M.J., Chung, M.J., Lee, J.H., Lee, K.S.: Performance of deep learning model in detecting operable lung cancer with chest radiographs. J. Thorac. Imaging 34, 86–91 (2019). https://doi.org/10.1097/RTI.0000000000000388
5. del Ciello, A., Franchi, P., Contegiacomo, A., Cicchetti, G., Bonomo, L., Larici, A.R.: Missed lung cancer: when, where, and why? Diagn. Intervent. Radiol. 23, 118 (2017). https://doi.org/10.5152/DIR.2016.16187
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ICNoduleNet: Enhancing Pulmonary Nodule Detection Performance on Sharp Kernel CT Imaging;IEEE Journal of Biomedical and Health Informatics;2024-08
2. From single to universal: tiny lesion detection in medical imaging;Artificial Intelligence Review;2024-07-04
3. PN-DetX: A Dedicated Framework for Pulmonary Nodule Detection in X-Ray Images;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
4. A systematic approach to deep learning-based nodule detection in chest radiographs;Scientific Reports;2023-06-21
5. An integrated convolutional neural network for classifying small pulmonary solid nodules;Frontiers in Neuroscience;2023-06-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3