1. G. Bhowmik and J.-C. Schlage-Puchta, Davenport’s constant for groups of the form $${\mathbb{Z}}_3 \oplus {\mathbb{Z}}_3 \oplus {\mathbb{Z}}_{3d}$$, Additive Combinatorics (A. Granville, M.B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes, vol. 43, American Mathematical Society, 2007, pp. 307 – 326.
2. F. Chen and S. Savchev, Long minimal zero-sum sequences in the groups $${C}_2^{r-1} \oplus {C}_{2k}$$, Integers 14 (2014), Paper A23.
3. A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, 2006.
4. A. Geroldinger, M. Liebmann, and A. Philipp, On the Davenport constant and on the structure of extremal sequences, Period. Math. Hung. 64 (2012), 213–225.
5. A. Geroldinger and I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, 2009.