1. Andreol, J.-M. (1992). Logic programming with focusing proofs in linear logic. Journal of Logic and Computation, 2(3), 297–347.
2. Blanqui, F., Dowek, G., Grienenberger, É., Hondet, G., & Thiré, F. (2021). Some axioms for mathematics. In N. Kobayashi (Ed.). 6th international conference on formal structures for computation and deduction, FSCD 2021, July 17–24, 2021, Buenos Aires, Argentina (Virtual Conference). LIPIcs (Vol. 195 pp. 20:1–20:19). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
3. D’Agostino, M. (2005). Classical natural deduction. In S. N. Artëmov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, & J. Woods (Eds.), We will show them! Essays in honour of Dov Gabbay (Vol. 1, pp. 429–468), College Publications.
4. Díaz-Caro, A., & Dowek, G. (2021). A new connective in natural deduction, and its application to quantum computing. In A. Cerone, & P. C. Ölveczky (Eds.) Theoretical aspects of computing - ICTAC 2021–18th international colloquium, virtual event, Nur-Sultan, Kazakhstan, September 8–10, 2021, Proceedings. Lecture Notes in Computer Science (Vol. 12819, pp. 175–193). Springer.
5. Gentzen, G. (1969). The collected papers of Gerhard Gentzen. North-Holland Pub. Co.