Energy Consumption Forecasting Using Ensemble Learning Algorithms
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-23946-6_1
Reference16 articles.
1. Zhang, X., Wang, J., Zhang, K.: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 146, 270–285 (2017). https://doi.org/10.1016/j.epsr.2017.01.035
2. Raza, M.Q., Khosravi, A.: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 50, 1352–1372 (2015). https://doi.org/10.1016/j.rser.2015.04.065
3. Saber, A.Y., Alam, A.K.M.R.: Short term load forecasting using multiple linear regression for big data. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6 (2017)
4. Pinto, T., Sousa, T.M., Vale, Z.: Dynamic artificial neural network for electricity market prices forecast. In: 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), pp. 311–316 (2012)
5. Pinto, T., Sousa, T.M., Praça, I., et al.: Support Vector Machines for decision support in electricity markets’ strategic bidding. Neurocomputing 172, 438–445 (2016). https://doi.org/10.1016/j.neucom.2015.03.102
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative Analysis of Short-Term Load Forecasting Using Machine Learning Techniques;Communications in Computer and Information Science;2024
2. Uncertainty management in electricity demand forecasting with machine learning and ensemble learning: Case studies of COVID-19 in the US metropolitans;Engineering Applications of Artificial Intelligence;2023-08
3. Optimization of tertiary building passive parameters by forecasting energy consumption based on artificial intelligence models and using ANOVA variance analysis method;AIMS Energy;2023
4. Stability improvement of the PSS-connected power system network with ensemble machine learning tool;Energy Reports;2022-11
5. Systematic Review of Deep Learning and Machine Learning for Building Energy;Frontiers in Energy Research;2022-03-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3