Author:
Bright Curtis,Gerhard Jürgen,Kotsireas Ilias,Ganesh Vijay
Publisher
Springer International Publishing
Reference25 articles.
1. Archer, A.F.: A modern treatment of the 15 puzzle. Am. Math. Mon. 106(9), 793–799 (1999)
2. Bell, J., Stevens, B.: A survey of known results and research areas for $$n$$-queens. Discret. Math. 309(1), 1–31 (2009)
3. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
4. Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Can. J. Math. 12, 189–203 (1960)
5. Bose, R.C., Shrikhande, S.S.: On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order $$4t+2$$. Proc. Natl. Acad. Sci. U.S.A. 45(5), 734–737 (1959)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modeling Path Puzzles as SAT Problems and How to Solve Them;Springer Proceedings in Mathematics & Statistics;2024
2. Efficient SAT-Based Approach for Solving Juosan Puzzles;Springer Proceedings in Mathematics & Statistics;2024
3. HermesBDD: A Multi-Core and Multi-Platform Binary Decision Diagram Package;2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS);2023-05-03
4. When satisfiability solving meets symbolic computation;Communications of the ACM;2022-06-21
5. Almost all Classical Theorems are Intuitionistic;RAIRO - Theoretical Informatics and Applications;2022