FOTV: A Generic Device Offloading Framework for OpenMP

Author:

Vazquez Jose Luis,Sanchez Pablo

Abstract

AbstractSince the introduction of the “target” directive in the 4.0 specification, the usage of OpenMP for heterogeneous computing programming has increased significantly. However, the compiler support limits its usage because the code for the accelerated region has to be generated in compile time. This restricts the usage of accelerator-specific design flows (e.g. FPGA hardware synthesis) and the support of new devices that typically requires extending and modifying the compiler itself.This paper explores a solution to these limitations: a generic device that is supported by the OpenMP compiler but whose functionality is defined at runtime. The generic device framework has been integrated in an OpenMP compiler (LLVM/Clang). It acts as a device type for the compiler and interfaces with the physical devices to execute the accelerated code. The framework has an API that provides support for new devices and accelerated code without additional OpenMP compiler modifications. It also includes a code generator that extracts the source code of OpenMP target regions for external compilation chains.In order to evaluate the approach, we present a new device implementation that allows executing OpenCL code as an OpenMP target region. We study the overhead that the framework produces and show that it is minimal and comparable to other OpenMP devices.

Publisher

Springer International Publishing

Reference15 articles.

1. Lecture Notes in Computer Science;Á Álvarez,2019

2. Khronos Group, “OpenCL: The open standard for parallel programming of heterogeneous systems” (2010). https://www.khronos.org/opencl/

3. NVIDIA, CUDA – Compute Unified Device Architecture. https://developer.nvidia.com/cuda-zone

4. Open MP API Specification. Version 5.0 (November 2018). https://www.openmp.org/specifications/

5. Bertolli, C., et al.: Integrating GPU support for OpenMP offloading directives into Clang. In: LLVM-HPC2015, Austin, Texas, USA, 15–20 November 2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3