Author:
Księżak Paweł,Wojtczak Sylwia
Publisher
Springer International Publishing
Reference25 articles.
1. Blanco-Justicia A, Domingo-Ferrer J (2019) Machine learning explain ability through comprehensible decision trees. In: Holzinger A, Kieseberg P, Min Tjoa A, Weippl E (eds) Machine learning and knowledge extraction. Springer, Cham. ISBN 978-3-030-29726-8
2. Brkan M, Bonnet G (2020) Legal and technical feasibility of the GDPR’s quest for explanation of algorithmic decisions: of black boxes, white boxes and fata morganas. Eur J Risk Regul. 11(18):II.2–II.3. ISSN 2190-8249
3. Glomsrud JA, Ødegårdstuen A, St. Clair AL, Smogeli Ø (2019) Trustworthy versus Explainable AI in Autonomous Vessels. Conference: ISSAV 2019 - International Seminar on Safety and Security of Autonomous Vessels At: Hanasaarenranta, Espoo, Finland: 2019, https://www.researchgate.net/publication/336210763_Trustworthy_versus_Explainable_AI_in_Autonomous_Vessels, last access on the 4th of August 2022
4. Habermas J (2009) Between facts and norms. Polity Press, Cambridge
5. Hamon R, Junklewitz H, Sanchez I (2020) Research Centre Technical Report. Robustness and explainability of artificial intelligence – from technical to policy solutions. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/57493. (online), JRC119336