Experimental Verification of a Computational Real-Time Neuronavigation System for Multichannel Transcranial Magnetic Stimulation

Author:

Daneshzand Mohammad,Navarro de Lara Lucia I.,Meng Qinglei,Makarov Sergey,Uluç Işıl,Ahveninen Jyrki,Raij Tommi,Nummenmaa Aapo

Abstract

AbstractMultichannel Transcranial Magnetic Stimulation (mTMS) provides the capability of stimulating multiple cortical areas simultaneously or in rapid succession by electronic shifting of the E-field hotspots. However, in order to target the desired brain region with intended intensity, the intracranial E-field distribution for all coil elements needs to be determined and subsequently combined to electronically synthesize a ‘hot spot’. Here, we assessed the performance of a computational TMS navigation system that was used to track the position of a 2×3-axis TMS coil array with respect to subject’s head and was integrated with a real-time high-resolution E-field calculation engine to predict the activated cortical regions as the array is moved around the subject’s head. For fast evaluation of the E-fields with high-resolution head models, we employed our previously proposed Magnetic Stimulation Profile (MSP) approach. Our preliminary tests demonstrated the capability of this system to precisely calculate and render E-fields with a frame rate of 6 Hz (6 frames/second). Furthermore, we utilized two z-elements from the 3-axis coils to form a figure of eight coil type and utilized it for suprathreshold stimulation of the hand first dorsal interosseous (FDI) muscle on a healthy human. The recorded motor evoked potentials (MEPs) showed clear activation of the FDI muscle comparable to the activation elicited by a commercial TMS coil. The estimated cortical E-field distributions showed a good agreement between the commercial TMS coil and the two z-elements of the 2×3-axis array.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3