1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
2. Albert B, Kodor PG, Csányi R (2013) On representing chemical environments. Phys Rev B 87:184115
3. Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys: Condensed Matter 26:183001
4. Behler J (2016) Perspective: machine learning potentials for atomistic simulations. J Chem Phys 145:170901
5. Behler J (2015) Constructing high-dimensional neural network potentials: a tutorial review. Int J Quant Chem 115(16):1032–1050