1. L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, calculus of variations, nonsmooth analysis and related topics. Set Valued Anal. 10(2–3), 111–128 (2002)
2. L. Ambrosio, S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal. 266, 4150–4188 (2014)
3. L. Ambrosio, N. Gigli, G. Savaré, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoamericana 29(3), 969–996 (2013)
4. L. Ambrosio, M. Miranda Jr., D. Pallara, Special functions of bounded variation in doubling metric measure spaces. Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1–45. Quad. Mat., vol. 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004
5. L. Ambrosio, P. Tilli, Topics on analysis in metric spaces. Oxford Lecture Series in Mathematics and Its Applications, vol. 25, viii+133 (2003)