Author:
Di Modica Giuseppe,Tomarchio Orazio
Publisher
Springer International Publishing
Reference22 articles.
1. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011).
https://doi.org/10.1109/TKDE.2011.47
2. Afrati, F., Dolev, S., Sharma, S., Ullman, J.: Meta-MapReduce: a technique for reducing communication in MapReduce computations. In: 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (Springer-SSS), Edmonton, Canada, August 2015
3. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join algorithms for log processing in MapReduce. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, pp. 975–986. ACM, New York (2010).
https://doi.org/10.1145/1807167.1807273
4. Cavallo, M., Di Modica, G., Polito, C., Tomarchio, O.: Fragmenting Big Data to boost the performance of MapReduce in geographical computing contexts. In: The 3rd International Conference on Big Data Innovations and Applications (Innovate-Data 2017), Prague, Czech Republic, pp. 17–24, August 2017.
https://doi.org/10.1109/Innovate-Data.2017.12
5. Cavallo, M., Modica, G.D., Polito, C., Tomarchio, O.: A hierarchical Hadoop framework to handle Big Data in geo-distributed computing environments. Int. J. Inf. Technol. Syst. Approach (IJITSA) 11(1), 16–47 (2018).
https://doi.org/10.4018/IJITSA.2018010102