Author:
Pan Yimu,Cai Tongan,Mehta Manas,Gernand Alison D.,Goldstein Jeffery A.,Mithal Leena,Mwinyelle Delia,Gallagher Kelly,Wang James Z.
Publisher
Springer Nature Switzerland
Reference29 articles.
1. Asadpour, V., Puttock, E.J., Getahun, D., Fassett, M.J., Xie, F.: Automated placental abruption identification using semantic segmentation, quantitative features, SVM, ensemble and multi-path CNN. Heliyon 9(2), e13577:1–13 (2023)
2. Bakkali, S., Ming, Z., Coustaty, M., Rusiñol, M., Terrades, O.R.: VLCDoC: vision-language contrastive pre-training model for cross-modal document classification. Pattern Recogn. 139(109419), 1–11 (2023)
3. Lecture Notes in Computer Science;Y Chen,2019
4. Chen, Y., et al.: AI-PLAX: AI-based placental assessment and examination using photos. Comput. Med. Imaging Graph. 84(101744), 1–15 (2020)
5. Cui, Q., et al.: Contrastive vision-language pre-training with limited resources. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13696, pp. 236–253. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_14