Improvement of Task-Oriented Visual Interpretation of VGI Point Data

Author:

Knura Martin,Schiewe Jochen

Abstract

AbstractVGI is often generated as point data representing points of interest (POIs) and semantic qualities (such as accident locations) or quantities (such as noise levels), which can lead to geometric and thematic clutter in visual presentations of regions with numerous VGI contributions. As a solution, cartography provides several point generalization operations that reduce the total number of points and therefore increase the readability of a map. However, these operations are applied rather general and could remove specific spatial pattern, possibly leading to false interpretations in tasks where these spatial patterns are of interest. In this chapter, we want to tackle this problem by defining task-oriented sets of map generalization constraints that help to maintain spatial pattern characteristics during the generalization process. Therefore, we conduct a study to analyze the user behavior while solving interpretation tasks and use the findings as constraints in the following point generalization process, which is implemented through agent-based modeling.

Publisher

Springer Nature Switzerland

Reference37 articles.

1. Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data. Springer, New York. https://doi.org/10.1007/3-540-31190-4

2. Bak P, Schaefer M, Stoffel A, Keim DA, Omer I (2009) Density equalizing distortion of large geographic point sets. Cartogr Geogr Inf Sci 36(3):237–250. https://doi.org/10.1559/152304009788988288

3. Beard K (1991) Constraints on rule formation. Map generalization: making rules for knowledge representation, pp 121–135

4. Burghardt D (2005) Controlled line smoothing by snakes. GeoInformatica 9(3):237–252. https://doi.org/10.1007/s10707-005-1283-3

5. Duchêne C, Touya G, Taillandier P, Gaffuri J, Ruas A, Renard J (2018) Multi-agents systems for cartographic generalization: feedback from past and on-going research. Research report, IGN (Institut National de l’Information Géographique et Forestière); LaSTIG, équipe COGIT. https://hal.archives-ouvertes.fr/hal-01682131

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3