Mungojerrie: Linear-Time Objectives in Model-Free Reinforcement Learning

Author:

Hahn Ernst MoritzORCID,Perez MateoORCID,Schewe SvenORCID,Somenzi FabioORCID,Trivedi AshutoshORCID,Wojtczak DominikORCID

Abstract

AbstractMungojerrie is an extensible tool that provides a framework to translate linear-time objectives into reward for reinforcement learning (RL). The tool provides convergent RL algorithms for stochastic games, reference implementations of existing reward translations for $$\omega $$ ω -regular objectives, and an internal probabilistic model checker for $$\omega $$ ω -regular objectives. This functionality is modular and operates on shared data structures, which enables fast development of new translation techniques. Mungojerrie supports finite models specified in PRISM and $$\omega $$ ω -automata specified in the HOA format, with an integrated command line interface to external linear temporal logic translators. Mungojerrie is distributed with a set of benchmarks for $$\omega $$ ω -regular objectives in RL.

Publisher

Springer Nature Switzerland

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shielded Deep Reinforcement Learning for Complex Spacecraft Tasking;2024 American Control Conference (ACC);2024-07-10

2. Artificial Intelligence Algorithms in Flood Prediction: A General Overview;Geo-information for Disaster Monitoring and Management;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3