Publisher
Springer International Publishing
Reference17 articles.
1. DEEP-Extreme Scale Technologies project. https://www.deep-projects.eu/. Accessed 08 Jul 2021
2. Auweter, A., et al.: A case study of energy aware scheduling on SuperMUC. In: Supercomputing, pp. 394–409 (2014)
3. Barreda, M., Dolz, M., Castaño, M.: Convolutional neural nets for estimating the run time and energy consumption of the sparse matrix-vector product. Int. J. High Perform. Comput. Appl. 35(3), 268–281 (2021)
4. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)
5. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2016)