Extraction and Representation of Financial Entities from Text

Author:

Repke Tim,Krestel Ralf

Abstract

AbstractIn our modern society, almost all events, processes, and decisions in a corporation are documented by internal written communication, legal filings, or business and financial news. The valuable knowledge in such collections is not directly accessible by computers as they mostly consist of unstructured text. This chapter provides an overview of corpora commonly used in research and highlights related work and state-of-the-art approaches to extract and represent financial entities and relations.The second part of this chapter considers applications based on knowledge graphs of automatically extracted facts. Traditional information retrieval systems typically require the user to have prior knowledge of the data. Suitable visualization techniques can overcome this requirement and enable users to explore large sets of documents. Furthermore, data mining techniques can be used to enrich or filter knowledge graphs. This information can augment source documents and guide exploration processes. Systems for document exploration are tailored to specific tasks, such as investigative work in audits or legal discovery, monitoring compliance, or providing information in a retrieval system to support decisions.

Publisher

Springer International Publishing

Reference85 articles.

1. Agichtein, E., & Gravano, L. (2000). Snowball: Extracting relations from large plain-text collections. In Proceedings of the Joint Conference on Digital Libraries (JCDL) (pp. 85–94). New York, NY, USA: ACM Press.

2. Almasian, S., Spitz, A., & Gertz, M. (2019). Word embeddings for entity-annotated texts. In Proceedings of the European Conference on Information Retrieval (ECIR). Lecture Notes in Computer Science (vol. 11437, pp. 307–322). Berlin: Springer.

3. Angeli, G., Premkumar, M. J. J., & Manning, C. D. (2015). Leveraging linguistic structure for open domain information extraction. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) (pp. 344–354). Stroudsburg, PA, USA: Association for Computational Linguistics.

4. Baker, S. R., Bloom, N., Davis, S. J., & Kost, K. J. (2019). Policy news and stock market volatility. Working Paper 25720, National Bureau of Economic Research.

5. Bastian, M., Heymann, S., Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International Semantic Web Conference (ISWC). Palo Alto, CA, USA: The AAAI Press.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3