1. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 238–247. Association for Computational Linguistics, Baltimore, Maryland (June 2014). https://aclanthology.org/P14-1023.pdf
2. Bojar, O., Ercegovčević, M., Popel, M., Zaidan, O.F.: A grain of salt for the WMT manual evaluation. In: Proceedings of the Sixth Workshop on Statistical Machine Translation, pp. 1–11. WMT 2011, Association for Computational Linguistics, Stroudsburg, PA, USA (2011). https://aclanthology.org/W11-2101/
3. Ebert, S., Müller, T., Schütze, H.: LAMB: a good shepherd of morphologically rich languages. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA (November 2016). https://aclanthology.org/D16-1071/
4. Endrédy, I., Prószéky, G.: A Pázmány Korpusz [The ‘Pázmány’ Corpus]. Nyelvtudományi Közlemények 112, 191–206 (2016). http://real.mtak.hu/79923/1/NyK20112_u.pdf
5. Laki, L., Novák, A., Siklósi, B.: English to Hungarian morpheme-based statistical machine translation system with reordering rules. In: Proceedings of the Second Workshop on Hybrid Approaches to Translation, pp. 42–50. Association for Computational Linguistics, Sofia, Bulgaria, August 2013. http://www.aclweb.org/anthology/W13-2808