Comprehending Object State via Dynamic Class Invariant Learning

Author:

Boockmann Jan H.ORCID,Lüttgen GeraldORCID

Abstract

AbstractMaintaining software is cumbersome when method argument constraints are undocumented. To reveal them, previous work learned preconditions from exemplary valid and invalid method arguments. In practice, it would be highly beneficial to know class invariants, too, because functionality added during software maintenance must not break them. Even more so than method preconditions, class invariants are rarely documented and often cannot completely be inferred automatically, especially for objects exhibiting complex state such as dynamic data structures.This paper presents a novel dynamic approach to learning class invariants, thereby complementing related work on learning method preconditions. We automatically synthesize assertions from an adjustable assertion grammar to distinguish valid and invalid objects. While random walks generate valid objects, a combination of bounded-exhaustive testing techniques and behavioral oracles yield invalid objects. The utility of our approach for code comprehension and software maintenance is demonstrated by comparing our learned invariants to documented invariant validation methods found in real-world Java classes and to the invariants detected by the Daikon tool.

Publisher

Springer Nature Switzerland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Penerapan Model Pembelajaran Menyimak Teks Berita Berlandaskan Teori Berpikir Logis Secara Luring;Pubmedia Jurnal Penelitian Tindakan Kelas Indonesia;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3