CBR-LIME: A Case-Based Reasoning Approach to Provide Specific Local Interpretable Model-Agnostic Explanations
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-58342-2_12
Reference25 articles.
1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
2. Doyle, D., Cunningham, P., Bridge, D.G., Rahman, Y.: Explanation oriented retrieval. In: Funk, P., González-Calero, P.A. (eds.) Advances in Case-Based Reasoning, ECCBR 2004. Lecture Notes in Computer Science, vol. 3155, pp. 157–168. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_13
3. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Ann. Statist. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451
4. Gates, L., Kisby, C., Leake, D.: CBR confidence as a basis for confidence in black box systems. In: Bach, K., Marling, C. (eds.) Case-Based Reasoning Research and Development, ICCBR 2019. Lecture Notes in Computer Science, vol. 11680, pp. 95–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_7
5. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Computat. Graph. Stat. 24(1), 44–65 (2015). https://doi.org/10.1080/10618600.2014.907095
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Case-based selection of explanation methods for neural network image classifiers;Knowledge-Based Systems;2024-03
2. Improving Explainability in CNN-Based Classification of Mask Images with HayCAM+: An Enhanced Visual Explanation Technique;Traitement du Signal;2024-02-29
3. Explainable AI models for predicting drop coalescence in microfluidics device;Chemical Engineering Journal;2024-02
4. Enhancing Reliability Through Interpretability: A Comprehensive Survey of Interpretable Intelligent Fault Diagnosis in Rotating Machinery;IEEE Access;2024
5. Machine learning modeling methodology for industrial solid ash;Machine Learning Applications in Industrial Solid Ash;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3