Author:
Aktar Sayeda Farzana,Andrei Stefan
Publisher
Springer Nature Switzerland
Reference54 articles.
1. Trueblood, J.S., Eichbaum, Q., Seegmiller, A.C., Stratton, C., O’Daniels, P., Holmes, W.R.: Disentangling prevalence induced biases in medical image decision-making. Cognition 212, 104713 (2021)
2. Busby, L., Courtier, J., Glastonbury, C.: Bias in radiology: The how and why of misses and misinterpretations. RadioGraphics 38, 170107 (2017). doi: https://doi.org/10.1148/rg.2018170107
3. Tee, Q.X., Nambiar, M., Stuckey, S.: Error and cognitive bias in diagnostic radiology. Journal of Medical Imaging and Radiation Oncology 66(2), 202–207 (2022)
4. Ashraf, A., Khan, S., Bhagwat, N., Chakravarty, M., Taati, B.: Learning to unlearn: Building immunity to dataset bias in medical imaging studies. arXiv preprint arXiv:1812.01716 (2018)
5. Faghani, S., Khosravi, B., Zhang, K., Moassefi, M., Jagtap, J.M., Nugen, F., Vahdati, S., Kuanar, S.P., Rassoulinejad-Mousavi, S.M., Singh, Y., et al.: Mitigating bias in radiology machine learning: 3. performance metrics. Radiology: Artificial Intelligence 4(5), 220061 (2022)