Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification

Author:

Pillonetto Gianluigi,Chen Tianshi,Chiuso Alessandro,De Nicolao Giuseppe,Ljung Lennart

Abstract

AbstractIn the previous parts of the book, we have studied how to handle linear system identification by using regularized least squares (ReLS) with finite-dimensional structures given, e.g., by finite impulse response (FIR) models. In this chapter, we cast this approach in the RKHS framework developed in the previous chapter. We show that ReLS with quadratic penalties can be reformulated as a function estimation problem in the finite-dimensional RKHS induced by the regularization matrix. This leads to a new paradigm for linear system identification that provides also new insights and regularization tools to handle infinite-dimensional problems, involving, e.g., IIR and continuous-time models. For all this class of problems, we will see that the representer theorem ensures that the regularized impulse response is a linear and finite combination of basis functions given by the convolution between the system input and the kernel sections. We then consider the issue of kernel estimation and introduce several tuning methods that have close connections with those related to the regularization matrix discussed in Chap. 3. Finally, we introduce the notion of stable kernels, that induce RKHSs containing only absolutely summable impulse responses and study minimax properties of regularized impulse response estimation.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3