Bias

Author:

Pillonetto Gianluigi,Chen Tianshi,Chiuso Alessandro,De Nicolao Giuseppe,Ljung Lennart

Abstract

AbstractAdopting a quadratic loss, the performance of an estimator can be measured in terms of its mean squared error which decomposes into a variance and a bias component. This introductory chapter contains two linear regression examples which describe the importance of designing estimators able to well balance these two components. The first example will deal with estimation of the means of independent Gaussians. We will review the classical least squares approach which, at first sight, could appear the most appropriate solution to the problem. Remarkably, we will instead see that this unbiased approach can be dominated by a particular biased estimator, the so-called James–Stein estimator. Within this book, this represents the first example of regularized least squares, an estimator which will play a key role in subsequent chapters. The second example will deal with a classical system identification problem: impulse response estimation. A simple numerical experiment will show how the variance of least squares can be too large, hence leading to unacceptable system reconstructions. The use of an approach, known as ridge regression, will give first simple intuitions on the usefulness of regularization in the system identification scenario.

Publisher

Springer International Publishing

Reference29 articles.

1. Berger JO (1980) A robust generalized Bayes estimator and confidence region for a multivariate normal mean. Ann Stat 8:716–761

2. Berger JO (1982) Selecting a minimax estimator of a multivariate normal mean. Ann Stat 10:81–92

3. Berger JO (1994) An overview of robust Bayesian analysis. Test 3:5–124

4. Bertero M (1989) Linear inverse and ill-posed problems. Adv Electron Electron Phys 75:1–120

5. Bhattacharya PK (1966) Estimating the mean of a multivariate normal population with general quadratic loss function. Ann Math Stat 37:1819–1824

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3