Author:
Chopin Nicolas,Papaspiliopoulos Omiros
Publisher
Springer International Publishing
Reference17 articles.
1. Briers, M., Doucet, A., & Maskell, S. (2010). Smoothing algorithms for state-space models. Annals of the Institute of Statistical Mathematics, 62(1), 61–89.
2. Briers, M., Doucet, A., & Singh, S. S. (2005). Sequential auxiliary particle belief propagation. In Proceedings of the 8th International Conference on Information Fusion (Vol. 1).
3. Del Moral, P., Doucet, A., & Singh, S. (2010). Forward smoothing using sequential Monte Carlo. arXiv e-prints 1012.5390.
4. Douc, R., Garivier, A., Moulines, E., & Olsson, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Annals of Applied Probability, 21(6), 2109–2145.
5. Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197–208.