Composition of Ensembles of Recurrent Neural Networks for Phishing Websites Detection
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-57672-1_22
Reference30 articles.
1. Adebowale, M., Lwin, K., Sánchez, E., Hossain, M.: Intelligent web-phishing detection and protection scheme using integrated features of Images, frames and text. Expert Systems with Applications 115, 300–313 (2019). https://doi.org/10.1016/J.ESWA.2018.07.067, https://www.sciencedirect.com/science/article/pii/S0957417418304925?via%3Dihub
2. Anti-Phishing Working Group, I.: Phishing Activity Trends Reports (2019). https://apwg.org/resources/apwg-reports/
3. Bahnsen, A.C., Bohorquez, E.C., Villegas, S., Vargas, J., Gonzalez, F.A.: Classifying phishing URLs using recurrent neural networks. In: 2017 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–8 (2017). https://doi.org/10.1109/ECRIME.2017.7945048, http://ieeexplore.ieee.org/document/7945048/
4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994). https://doi.org/10.1109/72.279181
5. Chiew, K.L., Tan, C.L., Wong, K., Yong, K.S., Tiong, W.K.: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system. Information Sciences 484, 153–166 (2019). https://doi.org/10.1016/j.ins.2019.01.064, https://www.sciencedirect.com/science/article/pii/S0020025519300763?via%3Dihub linkinghub.elsevier.com/retrieve/pii/S0020025519300763
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Boosting-Based Hybrid Feature Selection and Multi-Layer Stacked Ensemble Learning Model to Detect Phishing Websites;IEEE Access;2023
2. Multilayer Stacked Ensemble Learning Model to Detect Phishing Websites;IEEE Access;2022
3. Lightweight Cryptographic and Artificial Intelligence Models for Anti-smishing;Proceedings of International Conference on Emerging Technologies and Intelligent Systems;2021-12-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3