1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for $$k$$-means and Euclidean $$k$$-median by primal-dual algorithms. SIAM J. Comput. (2019). https://doi.org/10.1137/18M1171321
2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)
3. Arthur, D., Vassilvitskii, S.: $$k$$-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)
4. Asuncion, A., Newman, D.J.: UCI machine learning repository. University of California Irvine School of Information (2007)
5. Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.K.: The hardness of approximation of Euclidean $$k$$-means. In: Proceedings of the 31st International Symposium on Computational Geometry (SoCG), pp. 754–767 (2015)