Author:
Park Joshua K.,Coffey Nathan J.,Limoges Aaron,Le Anne
Abstract
AbstractThe study of cancer cell metabolism has traditionally focused on glycolysis and glutaminolysis. However, lipidomic technologies have matured considerably over the last decade and broadened our understanding of how lipid metabolism is relevant to cancer biology [1–3]. Studies now suggest that the reprogramming of cellular lipid metabolism contributes directly to malignant transformation and progression [4, 5]. For example, de novo lipid synthesis can supply proliferating tumor cells with phospholipid components that comprise the plasma and organelle membranes of new daughter cells [6, 7]. Moreover, the upregulation of mitochondrial β-oxidation can support tumor cell energetics and redox homeostasis [8], while lipid-derived messengers can regulate major signaling pathways or coordinate immunosuppressive mechanisms [9–11]. Lipid metabolism has, therefore, become implicated in a variety of oncogenic processes, including metastatic colonization, drug resistance, and cell differentiation [10, 12–16]. However, whether we can safely and effectively modulate the underlying mechanisms of lipid metabolism for cancer therapy is still an open question.
Publisher
Springer International Publishing
Reference154 articles.
1. Ma, X., et al. (2016). Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proceedings of the National Academy of Sciences, 113(10), 2573–2578.
2. Shevchenko, A., & Simons, K. (2010). Lipidomics: Coming to grips with lipid diversity. Nature Reviews Molecular Cell Biology, 11, 593.
3. Yang, K., & Han, X. (2016). Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences, 41(11), 954–969.
4. DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. Science Advances, 2(5), e1600200.
5. Beloribi-Djefaflia, S., Vasseur, S., & Guillaumond, F. (2016). Lipid metabolic reprogramming in cancer cells. Oncogene, 5, e189.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献