1. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
2. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of ICML. Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR, New York, New York, USA (20–22 Jun 2016)
3. Gawlikowski, J., et al.: A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342 (2021)
4. Guo, Changlu, et al.: Sa-unet: spatial attention u-net for retinal vessel segmentation. In: Proceedings of ICPR, pp. 1236–1242 (2021)
5. Jin, K., et al.: Fives: a fundus image dataset for artificial intelligence based vessel segmentation. Sci. Data 9(1), 475 (2022)