1. Basak, H., Chattopadhyay, S., Kundu, R., Nag, S., Mallipeddi, R.: Ideal: improved dense local contrastive learning for semi-supervised medical image segmentation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2023)
2. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Advances in Neural Information Processing Systems, vol. 33, pp. 12546–12558 (2020)
3. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)
4. Chen, S., Jia, X., He, J., Shi, Y., Liu, J.: Semi-supervised domain adaptation based on dual-level domain mixing for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11018–11027 (2021)
5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)