Simulation of Dynamic Stresses on High Performance Engine Valve Spring System Considering Coil Clashing Effect

Author:

Calabretta Michele,Sitta Alessandro,Oliveri Salvatore Massimo,Sequenzia Gaetano

Abstract

AbstractThe valve train plays a major role in the performance of internal combustion engines by controlling the combustion process and it is therefore one of the key aspects for increasing the efficiency of combustion engines. Considering the dynamics, the spring force must be high enough to reliably close the valve preventing from seating bouncing due to surge modes after the valve closure. On the other side, the spring force should be kept as low as possible in order to reduce the engine friction losses and consequently the fuel consumption. In the high-performance engines, the valve springs have to be designed and optimized for sustaining higher stresses with compact dimensions leading to critical material and manufacturing processes. This requires a reduction of moving masses and a strong focus on design and process optimization of the coil springs for reducing the mechanical load and the friction losses at low engine speed. At the same time, valve train should be reliable at high engine speed. The calculation of stresses and contact forces for moving parts under dynamic load is essential for durability analysis. A method to calculate the contact of moving masses is described and proposed to justify valve motions experimental results. To fully understand the failure mechanism of test bed reliability trials, the dynamic stresses have been calculated modeling the real springs’ shape. The contact forces have been reproduced considering the coil clash effects and the dynamic behavior of the flexible spring.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3