Enhancing Abstract Argumentation Solvers with Machine Learning-Guided Heuristics: A Feasibility Study

Author:

Hoffmann SandraORCID,Kuhlmann IsabelleORCID,Thimm MatthiasORCID

Abstract

AbstractAbstract argumentation frameworks model arguments and their relationships as directed graphs, often with the goal of identifying sets of arguments capable of defending themselves against external attacks. The determination of such admissible sets, depending on specific semantics, is known to be an NP-hard problem. Recent research has demonstrated the efficacy of machine learning methods in approximating solutions compared to exact methods. In this study, we leverage machine learning to enhance the performance of an exact solver for credulous reasoning under admissibility in abstract argumentation.More precisely, we first apply a random forest to predict acceptability, and subsequently use those predictions to form a heuristic that guides a search-based solver. Additionally, we propose a strategy for handling varying prediction qualities. Our approach significantly reduces both the number of backtracking steps and the overall runtime, compared to standard existing heuristics for search-based solvers, while still providing a correct solution.

Publisher

Springer Nature Switzerland

Reference26 articles.

1. Alviano, M.: The pyglaf argumentation reasoner. In: Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

2. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);L Amgoud,2011

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);S Bistarelli,2012

5. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementations for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumentation, chap. 15. College Publications (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3