Enhancing Argument Generation Using Bayesian Networks

Author:

Cao Yuan,Fuchs Rafael,Keshmirian Anita

Abstract

AbstractIn this paper, we examine algorithms that utilize factor graphs from Bayesian Belief Networks to generate and evaluate arguments. We assess their strengths and weaknesses, which leads to the creation of our improved algorithm that rectifies the issues that we identified. Our approach includes applying the original and modified algorithms to previously known networks to pose challenges in generating robust arguments for humans and computers. Our findings reveal significant improvements in the creation of more robust arguments. Moreover, we delve into the dynamics of argument interaction, offering detailed insight into the algorithms’ practical efficacy.

Publisher

Springer Nature Switzerland

Reference9 articles.

1. Acar, U.A., Ihler, A., Mettu, R., Sümer, O.: Adaptive Bayesian inference. Neural Information Processing Systems (NIPS), vol. 10, pp. 2981562–2981743 (2007)

2. Cruz, N., et al.: Widening access to Bayesian problem-solving. Front. Psychol. 11, 660 (2020)

3. Dewitt, S., Lagnado, D., Fenton, N.: Updating prior beliefs based on ambiguous evidence. In: COGSCI2018: Changing Minds, pp. 2047-2052 (2018)

4. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles And Techniques. MIT Press, Cambridge, MA (2009)

5. Lauritzen, S.L.: Graphical Models, vol. 17. Clarendon Press, Oxford (1996)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3