Pattern Based Software Architecture for Predictive Maintenance

Author:

Torim AntsORCID,Liiv Innar,Ounoughi Chahinez,Yahia Sadok BenORCID

Abstract

AbstractMany industrial sectors are moving toward Industry Revolution (IR) 4.0. In this respect, the Internet of Things and predictive maintenance are considered the key pillars of IR 4.0. Predictive maintenance is one of the hottest trends in manufacturing where maintenance work occurs according to continuous monitoring using a healthiness check for processing equipment or instrumentation. It enables the maintenance team to have an advanced prediction of failures and allows the team to undertake timely corrective actions and decisions ahead of time. The aim of this paper is to present a smart monitoring and diagnostics system as an expert system that can alert an operator before equipment failures to prevent material and environmental damages. The main novelty and contribution of this paper is a flexible architecture of the predictive maintenance system, based on software patterns - flexible solutions to general problems. The presented conceptual model enables the integration of an expert knowledge of anticipated failures and the matrix-profile technique based anomaly detection. The results so far are encouraging.

Publisher

Springer International Publishing

Reference17 articles.

1. About the Unified Modeling Language Specification Version 2.5.1. https://www.omg.org/spec/UML/2.5.1

2. Arlow, J., Neustadt, I.: Enterprise Patterns and MDA: Building Better Software with Archetype Patterns and UML. Addison-Wesley Professional (Dec 2003), google-Books-ID: _fSVKDn7v04C

3. Cachada, A., et al.: Maintenance 4.0: intelligent and predictive maintenance system architecture. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 139–146, September 2018. https://doi.org/10.1109/ETFA.2018.8502489, iSSN: 1946-0759

4. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley Professional (1997). google-Books-ID: 4V8pZmpwmBYC

5. Groba, C., Cech, S., Rosenthal, F., Gossling, A.: Architecture of a predictive maintenance framework. In: 6th International Conference on Computer Information Systems and Industrial Management Applications (CISIM 2007), pp. 59–64, June 2007. https://doi.org/10.1109/CISIM.2007.14

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3