Fake News Detection by Weakly Supervised Learning Based on Content Features

Author:

Özgöbek Özlem,Kille Benjamin,From Anja Rosvold,Netland Ingvild Unander

Abstract

AbstractFake news, defined as the publication of false information, either unintentional or with the intent to deceive or harm, is one of the important issues that affects today’s digital society significantly. All around the world, journalists and fact checking organizations are trying to fight this problem manually. However, fighting fake news is a time-sensitive task. Once leaked, fake news spreads fast and its impact on society increases. Because of the complex and dynamic nature of news, applying artificial intelligence methods to address the automatic detection of fake news is a challenging task. This work explores the use of weak supervised learning for fake news detection by using only the content of news articles. This is particularly important when the contextual information is not available or difficult to obtain quickly. To our knowledge, this is the first work which uses a content-based approach in weak supervised learning without the use of any contextual information for fake news detection. We propose an architecture that generates weak labels. We explore the effect of using weak labels for fake news detection with five different machine learning models. We demonstrate that weakly supervised learning is an effective approach to the automated detection of fake news in the absence of high quality labels.

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3