Author:
Saoud Hajar,Ghadi Abderrahim,Ghailani Mohamed
Publisher
Springer International Publishing
Reference14 articles.
1. Saoud, H., et al.: Application of data mining classification algorithms for breast cancer diagnosis. In: Proceedings of the 3rd International Conference on Smart City Applications - SCA 2018, pp. 1–7. ACM Press, Tetouan (2018).
https://doi.org/10.1145/3286606.3286861
2. Saoud, H., et al.: Using feature selection techniques to improve the accuracy of breast cancer classification. In: Ben Ahmed, M., et al. (ed.) Innovations in Smart Cities Applications, edn. 2. pp. 307–315. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-11196-0_28
3. Le cancer du sein.
https://www.passeportsante.net/fr/Maux/Problemes/Fiche.aspx?doc=cancer_sein_pm
. Accessed 19 Oct 2019
4. Le diagnostic.
https://rubanrose.org/cancer-du-sein/depistage-diagnostics/diagnostic
. Accessed 19 Oct 2019
5. Khuriwal, N., Mishra, N.: Breast cancer diagnosis using adaptive voting ensemble machine learning algorithm. In: 2018 IEEMA Engineer Infinite Conference (eTechNxT), pp. 1–5. IEEE, New Delhi (2018).
https://doi.org/10.1109/ETECHNXT.2018.8385355