Publisher
Springer International Publishing
Reference19 articles.
1. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017).
https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017).
https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017).
https://doi.org/10.1038/sdata.2017.117
4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint
arXiv:1811.02629
(2018)
5. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancing Medical Imaging: A Comprehensive Synthetic Dataset for Infant Brain MRI Analysis;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02
2. Multi-scale features and attention guided for brain tumor segmentation;Journal of Visual Communication and Image Representation;2024-04
3. Multimodal Transformer of Incomplete MRI Data for Brain Tumor Segmentation;IEEE Journal of Biomedical and Health Informatics;2024-01
4. Brain Tumor Segmentation Algorithm Based on Multi-scale Deep Learning Networks;2023 China Automation Congress (CAC);2023-11-17
5. Heuristic Tubular Growth with Adaptive Voxel Filtering for Coronary Artery Segmentation;2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC);2023-10-20