Hybrid Digital Twins Using FMUs to Increase the Validity and Domain of Virtual Commissioning Simulations

Author:

Pfeifer Denis,Baumann Andreas,Giani Marco,Scheifele Christian,Fehr Jörg

Abstract

AbstractThe main objective of virtual commissioning is to help design and validate the control systems of entire production plants. Therefore, simulations on a logical and kinematic level are performed, typically in a Software- or Hardware-in-the-Loop configuration using the original control software and controller [1].However, the lack of level of detail means that this type of simulation is insufficient for an integrated system dynamics and control algorithms design. These engineering tasks are currently performed in separate tools, e.g. by finite element analysis, multibody simulations or by a combination, i.e. elastic multibody systems (EMBS) [2]. However, the designed components are only considered individually and not in the context of the control technology used. Therefore, primarily synthetic inputs are used and not the original control behavior. With a higher level of simulation detail, further questions about the system, such as the effect of control algorithms on the dynamic processes, can be virtually validated.Therefore, this paper explores hybrid component-based digital twins to combine the advantages of both VC and EMBS. Hybrid components allow the simulation of the interactions between process, machine and control system with a high level of detail where this is beneficial. Such integration is achieved using the Functional Mock-up Interface (FMI) to couple different simulation models in a co-simulation environment [3]. This is demonstrated in a simulation use case of an inverted pendulum. The level of detail of individual components in the virtual commissioning tool ISG-virtuos [4] is increased by the modular integration of elastic multibody simulations via FMI so that the swing-up controller can be designed in the simulation.

Publisher

Springer International Publishing

Reference18 articles.

1. Pritschow, G., Röck, S.: Hardware in the loop simulation of machine tools. In: CIRP Annals (2004)

2. Siedl, D.: Simulation des dynamischen Verhaltens von Werkzeugmaschinen während Verfahrbewegungen. In: Verlag, H.U. (ed.) Herbert Utz Verlag (2008)

3. Blockwitz, T., et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: 9th International Modelica Conference (2012)

4. ISG-virtuos homepage. https://www.isg-stuttgart.de/de/digitaler-zwilling. Accessed 05 Jun 2022

5. Lechler, A., Kircher, C., Verl, A.: SDM - Software Defined Manufacturing, wt Werkstattstechnik online (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3