1. Zhang, Y., et al.: Neural complexity in patients with poststroke depression: a resting EEG study. J. Affect. Disord. 188, 310–318 (2015)
2. Huang, H., Xie, Q., Pan, J., He, Y., Wen, Z., Yu, R., Li, Y.: An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Trans. Affect. Comput. 1 (2019). https://doi.org/10.1109/TAFFC.2019.2901456
3. Asghar, M.A., Khan, M.J., Amin, Y., Rizwan, M., Rahman, M., Badnava, S., Mirjavadi, S.S., et al.: EEG-based multi-modal emotion recognition using bag of deep features: an optimal feature selection approach. Sensors 19(23), 5218 (2019)
4. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. Comput. Sci. arXiv preprint arXiv:1511.06448 (2015)
5. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)