Author:
Joutard Samuel,Pheiffer Thomas,Audigier Chloe,Wohlfahrt Patrick,Dorent Reuben,Piat Sebastien,Vercauteren Tom,Modat Marc,Mansi Tommaso
Publisher
Springer International Publishing
Reference17 articles.
1. Carrillo, A., Duerk, J., Lewin, J., Wilson, D.: Semiautomatic 3-D image registration as applied to interventional MRI liver cancer treatment. IEEE Trans. Med. Imaging 19(3), 175–185 (2000). https://doi.org/10.1109/42.845176
2. Cash, D.M., et al.: Concepts and preliminary data toward the realization of image-guided liver surgery. J. Gastrointest. Surg. 11(7), 844–59 (2007). https://www.proquest.com/scholarly-journals/concepts-preliminary-data-toward-realization/docview/1112236808/se-2?accountid=11862. copyright - The Society for Surgery of the Alimentary Tract 2007; Dernière mise á jour - 2014–03-30
3. Chen, X., et al.: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 175–184 (2021). https://doi.org/10.1016/j.radonc.2021.04.019
4. Christ, P.F., et al.: The liver tumor segmentation benchmark (LiTS). CoRR abs/1901.04056 (2019). http://arxiv.org/abs/1901.04056
5. Estienne, T., et al.: Deep learning based registration using spatial gradients and noisy segmentation labels. CoRR abs/2010.10897 (2020). https://arxiv.org/abs/2010.10897
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Global registration of kidneys in 3D ultrasound and CT images;International Journal of Computer Assisted Radiology and Surgery;2024-09-06